AN ALTERNATIVE WAY TO OPTIMIZING MESSAGING DISTRIBUTION APPLYING CHINESE POSTMAN ALGORITHM (CPP) TESTING WITH COMPLEMENTARY SLACKNESS THEOREM USING MULTIPLE PATHS. INSIDE MEXICAN PUBLIC INSTITUTION

Francisco Zaragoza Huerta*

Abstract

This paper presents an efficient way to manage the distribution of messaging in a public company in Mexico, modeling multiple route options with the objective to minimize the delivery time as well as the use of resources to achieve to meet the target. The work is based on the algorithm of the Chinese Postman uses linear programming as a way to reach the optimization model. The way to build it is simple and practical, it may be useful to private and public companies, obtaining and interpretation of results are produced through a very effective code to run in polynomial time with amazing times and translation solution is relatively simple and the implementation costs will result very competitive.. In this time of globalization, enterprises and institutions must take refuge in science as a way of making smart, rational choices. Analogously complementary slackness theorem is applied to show the power of the theorem in order to guarantee the optimization of a linear model with multicapacity. In an alternate mathematical tool .

Key Words. Postman, Slackness, odd flow,node.

[^0]Objective.
This research document show an interesting algorithm for undertaking that distribute products or services across pipeline, messaging routes or another using multiple branches and how it can be minimizing distances and associated factors such as time and money, when you need to travel at least twice on the same route. By other hand the solution is tested using marvelous tool called the complementary slackness theorem how alternative to raise the competitiveness required in world class companies.

Introduction.

In 1962themathematician namedKuanMei-Ko wasinterested in howpostal staffcoulddeliver the lettersinto a numberofblockssuch thatthetotal distance walkedby themailmanis asshortas possible.
TheCPPis one of theclassical problemsindiscrete mathematicsalsois anequivalent tothe travelagent (TSP) problemisposedas follows: A portfolioorpostmanshouldgo anumber ofcity streets, visit eachat least onceanddeliver mailand then returnto theirhomeoffice(Eulerian cycle), Jarvis(2005), is tofind a routetothe postmanthat minimizesthetotal distance traveled. Ifthe networkhas anEulerian cycleis clearthat thiswillsolve theproblem anotherway, surely some vertexisofodddegreewhichwill leadtours oftheedge(s) more than once. Recall thatan Euleriancycle.It isthiscycle thatpasses through all thenodesonceand traverseseach edgeexactly and strictly only once, otherwise you will need to convert the original problem across

> Eulerian
cycle
The stepsto resolvethis problemis summarized inthe followingparagraphs,Barnes(2005):

Step 1	Identifyingflownodesoddconsideringthe arcsthat are related tothem.
Step 2	These nodesmust appearconsideringall possible pairs.
Step 3	Findingthe shortest distance betweeneach pair ofoddnodes.
Step 4	Choose the set of odd nodes including node and select a pair that route with minimum total distance. The peer node is added to the sum of all the arcs between odd nodes to give the smallest distance to traverse the network and return to the original point.

ImplementationProposal

Solve thefollowing problemshownin Graph 1 oncourier deliveryofthe MigrantMinistryof the State Government in Mexicoat differentworkplacesusing thePCCalgorithm tothe following offices, the lines representrelationships betweenagencies andshownbesidesa number thatis thelength thereof, it can be seenthat the position ofthe post office(source)does not affectthe solution.

Graph. 1 Original Problem.

Step 1

Node Number	Number of Edges	Type Node	Node Number	Number of Edges	Type Node
6	3	Odd	1	2	Pair
9	3	Odd	3	2	Pair
4	3	Odd	5	4	Pair
2	3	Odd	7	2	Pair
8	3	Odd	11	2	Pair
10	3	Odd			

International Journal of Engineering \& Scientific Research http://www.ijmra.us

Table I.
Table of Pairs and Odd Nodes in the Network.

Step 2

Nodes and Names	Relation between Work Centers	Distances in meters
1. Secretary of Migrant	$1-2$	100
2. Administration Bureau	$1-6$	600
3. Particular Secretary	$2-3$	300
4. SocialService Bureau	$2-5$	800
5. Human Resources Bureau	$3-4$	400
6. Informatics Department	$4-5$	500
7.Benefits Office	$5-10$	300
8. Training Bureau	$5-9$	600
9. Legacy Office	$6-7$	400
10.Audience Bureau	$7-8$	300
11 Workshops Studio	$8-9$	400
12.Ofice Files	$8-11$	500
13. Social Communication Bureau	$9-10$	800
14.Pay Rolls and Salaries Bureau	700	
15.Labor Relations Bureau	$10-11$	100

Table II

Step 3
Graph odd nodes is done by calculating the minimum distance considering all nodes scam nominal flow
(input and output).

International Journal of Engineering \& Scientific Research http://www.ijmra.us

For example;If you want to go since node number 2 (two) even node number ten (10) The total Distance Shortest Path is as follow ;
$2 \longmapsto 3 \longmapsto 4 \longmapsto 10$ with flow equal to $300+400+300$ in summary we have total flow of 1000 . You can see how we can go directly since node number two (2) even node number ten(10) in the network.
$2 \longleftrightarrow 10$ total flow equal to 1000

This leads makes a simplification of nodes, as such in the graph note on the third node (3) only has one input stream and an output stream having a total time and considers two flows (pair), which is adds the value of these flows and disappears from the network analysis. Graph 2.

Step 3

Chinese Postman Algorithm to detail

Odd	Matrix of shortest distances between odds nodes				
	4	6	8	9	10
2	$\begin{gathered} 300+400=7 \\ 00 \end{gathered}$	$100+600=700$	$\begin{gathered} 100+600+300+400=1 \\ 400 \end{gathered}$	$\begin{gathered} 800+400=12 \\ 00 \end{gathered}$	$\begin{gathered} 300+400+300=10 \\ 00 \end{gathered}$
4		$\begin{gathered} 500+600=110 \\ 0 \end{gathered}$	$300+100+800=1200$	$\begin{gathered} 500+400=90 \\ 0 \end{gathered}$	300
6			$300+400=700$	$\begin{gathered} 600+400=10 \\ 00 \end{gathered}$	$\begin{gathered} 600+500+300=14 \\ 00 \end{gathered}$
8				500	$800+100=900$
9					700
10					

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering \& Scientific Research http://www.ijmra.us

Table III
Step 4
Chinese Postman Algorithm to detail

Odd Node	Variables in the network graphic between odds nodes.				
	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
2	X 1	X 2	X 3	X 4	X 5
4		X 6	X 7	X 8	X 9
6			X 10	X 11	X 12
8				X 13	X 14
9					X 15
10					

Table IV
Step 4

Graph 2

Once computed the minimum distances only between nodes with odd line flow you can see the graph 2, Note that now all network nodes have odd degree, which will result in more than one tour at some edges, Therefore integrated into the objective function and generating constraints

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering \& Scientific Research http://www.ijmra.us

for each odd node to be codified model and subsequent analysis on the results produced by the software.

Note that nodes $1,3,5,7$ and 11 are considered in the network of graph number II, but they do not appear as such, we are now able to set the linear programming model based on the above graph.

The linear programming model is as follows;

$$
\begin{aligned}
& \operatorname{Min}, 700 x_{1}+700 x_{2}+1400 x_{3}+1200 x_{4}+1000 x_{5}+1100 x_{6}+1200 x_{7}+900 x_{8}+300 x_{9}+ \\
& \ldots \ldots \ldots \ldots \ldots . .+700 x_{10}+1000 x_{11}+1400 x_{12}+500 x_{13}+900 x_{14}+700 x_{15}
\end{aligned}
$$

subject, to

$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}<=1,($ node. 2$)$
$x_{1}+x_{6}+x_{7}+x_{8}+x_{9}<=1,($ node. 4$)$
$x_{2}+x_{6}+x_{10}+x_{11}+x_{12}<=1,($ node, 6$)$
$x_{3}+x_{7}+x_{10}+x_{13}+x_{14}<=1,($ node .8$)$
$x_{4}+x_{8}+x_{11}+x_{13}+x_{15}<=1,($ node .9$)$
$x_{5}+x_{9}+x_{12}+x_{14}+x_{15}<=1,($ node 10$)$

Table V

Programming Linear Code

* Chinese Postman Algorithm
*Performance by Dr. Francisco Zaragoza

Sets

j/ 1*15 /
i/ 1*6/;

Parameters

B(i) / $1 \quad 1$
$2 \quad 1$

International Journal of Engineering \& Scientific Research http://www.ijmra.us

International Journal of Engineering \& Scientific Research

 http://www.ijmra.us| MODEL ejerc | OBJECTIVE z |
| :---: | :---: |
| TYPE MIP | DIRECTION MINIMIZE |
| SOLVER CPLEX | FROM LINE 50 |
| | |
| **** SOLVER STATUS | 1 Normal Completion |
| **** MODEL STATUS | $\mathbf{1}$ Optimal |
| **** OBJECTIVE VALUE | $\mathbf{1 5 0 0 . 0 0 0 0}$ |

Table VII.

- VAR x

	LOWER	LEVEL	UPPER	MARGINAL
1	.	-	1.000	700.000
2	.	1.000	1.000	700.000
3	-	-	1.000	1400.000
4	-	-	1.000	1200.000
5	.	-	1.000	1000.000
6	-	.	1.000	1100.000
7	.	.	1.000	1200.000
8	.	-	1.000	900.000
9	.	1.000	1.000	300.000
10	.	.	1.000	700.000
11	.	-	1.000	1000.000
12	.	-	1.000	1400.000
13	.	1.000	1.000	500.000
14	.	-	1.000	900.000
15	.	-	1.000	700.000
SOLVE SUMMARY				

International Journal of Engineering \& Scientific Research

 http://www.ijmra.usTable VIII

Variable x				
Coger	Level	Upper	Marginal	
-INF	$\mathbf{1 5 0 0 . 0 0}$	INF		.

Graph3 shows the results obtained from the Gams software and integrated graphics, the minimum distances of odd nodes under study.

Graph 3

About the graph number 3 which is equivalent to the following final graph 4 where the results based on the original network are implemented.

Graph 4

International Journal of Engineering \& Scientific Research

From the above results and analyzing the graph 4, above, is observed that the minimum distance is equal to 1500 so it must be the routes that should be used twice for the minimum time must:

Experimental Results	Names Nodes
Path	
Entre el nodo 6 y 1	Secretary of Migrant and Informatics Department
Entre el nodo 1 y 2	Secretary of Migrant and Administration Bureau
Entre el nodo 4 y 10	Social Service Bureau and Audience Bureau
Entre el nodo 9 y 8	Training Bureau and Legacy Office

Table IX.

Solution Path

The staff must leave the node 1 goes through all edges at least once, through all the edges and performs dual path between nodes $(6,1),(1,2),(4.10)$ and $(9,8)$, so that leaves and returns to the origin.

The route for the staff starts and ends at node 1																			
1	6	7	8	9	8	11	10	4	10	9	5	4	3	2	1	6	5	2	1

Table X

See Graph 4

- It is very interesting to observe the execution time Only 0.047 seconds a timer job simply spectacular .
- The information generated can be translated in time for money overall efficiency for performance evaluation of existing systems and continuous improvement scenarios, is the art of mathematical programming to its fullest.

Application of the condition of Complementary Slackness Theorem. To the original problem solved by C.P.P. Algorithm

International Journal of Engineering \& Scientific Research

 http://www.ijmra.usOne of the main theorems in the theory of linear programming duality theorem Complementary clearance. This theorem allows us to find the optimal solution of the dual problem when we know the optimal solution of the primal problem (and reciprocally) by solving a system of equations consisting of the decision variables
(primal and dual) and restrictions (model primal and dual) .
The importance of this theorem is that it facilitates the resolution of the models of linear optimization , allowing who solves find the simplest model to address (from the algorithmic point of view) given that in any way you can get the results of the equivalent model associated (is this the model primal or dual) .

This is a very important theorem relating the primal and dual problems, which obviously indicates that at least one of the two terms in each particular expression must be zero. Bazaraa (2005)

If x^{*} and w^{*} are any solutions to the problem Primal and Dual problems in canonical form pair respectively.

We have to ;

$$
\mathrm{Cx}^{*}=\mathrm{w}^{*} \mathrm{Aw}^{*}=\mathrm{w}^{*} \mathrm{~b}
$$

But Cx* $=\mathrm{w}^{*}$ b;
Therefore $C x^{*}=w^{*} A w^{*}=w^{*} b$
being obtained $w^{*}\left(A x^{*}-b\right)=0 y\left(C-w^{*} A\right) x^{*}=0$
Table XI

Complementary Slackness Theorem.

(cj-w*aj) xj* $=0 ;$ para $j=1,2, \ldots . ., n$
$w^{*} i\left(\right.$ ai $x^{*}-$ bi $)=0$, para $i=1,2, \ldots, m$

Table XII

In a linear programming problem when optimality is reached. If a variable in a problem is nonzero, then the corresponding equation in the other mutual problem must be set $(A x-b=0)$ and an equation if a problem does not fit ($\mathrm{Ax}-\mathrm{b} 0$), then the corresponding variable in the other reciprocal problem must be zero.

Proposed Allocation of Public Administration
Given the optimal solution of the dual problem, the optimal solution using Chinese Postman algorithm (original problem) using Complementary Slackness Theorem.

Primal Model of Original problem

$$
\begin{aligned}
& \operatorname{Min}, 700 x_{1}+700 x_{2}+1400 x_{3}+1200 x_{4}+1000 x_{5}+1100 x_{6}+1200 x_{7}+900 x_{8}+300 x_{9}+ \\
& \ldots \ldots \ldots \ldots \ldots .+700 x_{10}+1000 x_{11}+1400 x_{12}+500 x_{13}+900 x_{14}+700 x_{15}
\end{aligned}
$$

subject, to

$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}<=1,($ node. 2$)$
$x_{1}+x_{6}+x_{7}+x_{8}+x_{9}<=1,($ node. 4$)$
$x_{2}+x_{6}+x_{10}+x_{11}+x_{12}<=1,($ node .6$)$
$x_{3}+x_{7}+x_{10}+x_{13}+x_{14}<=1,($ node .8$)$
$x_{4}+x_{8}+x_{11}+x_{13}+x_{15}<=1,($ node. 9$)$
$x_{5}+x_{9}+x_{12}+x_{14}+x_{15}<=1,($ node. 10$)$

Table XIII

Dual model to Primal Problem using CPP Algorithm

$$
\begin{aligned}
& \text { Max, } w=y 1+y 2+y 3+y 4+y 5 \\
& \text { Sujeto, } a \\
& y 1+y 2<=700 \\
& y 1+y 3<=700 \\
& y 1+y 4<=1400 \\
& y 1+y 5<=1200 \\
& y 1+y 6<=1000 \\
& y 2+y 3<=1100 \\
& y 2+y 4<=1200 \\
& y 2+y 5<=900 \\
& y 3+y 4<=300 \\
& y 3+y 5<=1000 \\
& y 3+y 6<=1400 \\
& y 4+y 5<=500 \\
& y 4+y 6<=900 \\
& y 5+y 6<=700 \\
& y 1, y 2, y 3, y 4, y 5>=0
\end{aligned}
$$

Table XIV

Experimental Results.

Global optimal solution found using Lindo Software	
Objective value:	$\mathbf{1 5 0 0 . 0 0 0}$
Infeasibilities:	$\mathbf{0 . 0 0 0 0 0 0}$
Total solver iterations:	$\mathbf{6}$
Model Class:	LP
Total variables:	$\mathbf{6}$
Nonlinear variables:	$\mathbf{0}$
Integer variables:	$\mathbf{0}$

Total constraints:	16
Nonlinear constraints:	0
Total nonzeros:	35
Nonlinear nonzeros:	0
Variable	Value Reduced Cost
Y1	$400.0000 \quad 0.000000$
Y2	$300.0000 \quad 0.000000$
Y3	$300.0000 \quad 0.000000$
Y4	$0.000000 \quad 1.000000$
Y5	500.0000 0.000000
Y6	$0.000000 \quad 0.000000$
Row	Slack or Surplus Dual Price
1	1500.0001 .000000
2	0.0000001 .000000
3	0.000000 0.000000
4	$1000.000 \quad 0.000000$
5	$300.0000 \quad \mathbf{0 . 0 0 0 0 0 0}$
6	$600.0000 \quad 0.000000$
7	500.0000 0.000000
8	$900.0000 \quad 0.000000$
9	100.0000 0.000000
10	$0.000000 \quad 0.000000$
11	0.0000001 .000000
12	$200.0000 \quad 0.000000$
13	$1100.000 \quad 0.000000$

14	0.000000	1.000000
15	900.0000	0.000000
16	200.0000	0.000000

Table XV
Substituting the solution into the dual problem values are;

$$
\begin{aligned}
& y 1+y 2<=700 ; 400+300<=700, \text { satisfied,equation } \\
& y 1+y 3<=700 ; 400+300<=700, \text { satisfied, equation } \\
& y 1+y 4<=1400,400+0<=1400, \text { not, satisfied,equation } \\
& y 1+y 5<=1200,400+500<=1200, \text { not, satisfied, equation } \\
& y 1+y 6<=1000,400+0<=1000, \text { not, satisfied, equation } \\
& y 2+y 3<=1100,300+300<=1100, \text { not, satisfied, equation } \\
& y 2+y 4<=1200 ; 300+0<=1200 \text {, not, satisfied, equation } \\
& y 2+y 5<=900 ; 300+500<=900, \text { not, } \text { satisfied, equation } \\
& y 2+y 6<=300 ; 300+0<=300, \text { satisfied, equation } \\
& y 3+y 4<=700 ; 300+0<=700, \text { not, satisfied,equation } \\
& y 3+y 5<=1000,300+500<=1000, \text { not, satisfied, equation } \\
& y 3+y 6<=1400 ; 300+0<=1400, \text { not, satisfied, equation } \\
& y 4+y 5<=500 ; 0+500<=500, \text { satisfied, equation } \\
& y 4+y 6<=900 ; 0+0<=900, \text { not, satisfied,equation } \\
& y 5+y 6<=700 ; 500+0<=700 ; \text { not, satisfied,equation }
\end{aligned}
$$

Table XVI

Note: Where it is mentioned that the equation is adjusted, it means reached exactly the resource value of the right side, otherwise it is not reached. Which means:

That the values are perfectly satisfied equations 1, 2, 9 and 13
As with the subscript variables in the primal problem will have a nonzero value and the equations that are not satisfied we will assume that the variables with the subscript number of the equation have zero value in the primal.

Consider the primal equations where $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 9$ and x 13 variables that have zero value are embedded, all other variables have zero, which allows us to clear and know the value of the primal variables we seek.

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}+x_{5}<=1,(\text { node } .2) \\
& x_{1}+x_{6}+x_{7}+x_{8}+x_{9}<=1,(\text { node } .4) \\
& x_{2}+x_{6}+x_{10}+x_{11}+x_{12}<=1,(\text { node } .6) \\
& x_{3}+x_{7}+x_{10}+x_{13}+x_{14}<=1,(\text { node } .8) \\
& x_{4}+x_{8}+x_{11}+x_{13}+x_{15}<=1,(\text { node } .9) \\
& x_{5}+x_{9}+x_{12}+x_{14}+x_{15}<=1,(\text { node } .10)
\end{aligned}
$$

Table XVII

Substituting, values, in, primal, problem, $u \sin g$, dual, problem, therefore, we, have,

$$
\begin{aligned}
& x 1+x 2+0+0+0<=1,(\text { node }, 2) \\
& x 1+0+0+0+x 9<=1,(\text { node }, 4) \\
& x 2+0+0+0+0<=1,(\text { node }, 6) \\
& 0+0+0+0+x 13+0<=1,(\text { node }, 8) \\
& 0+0+0+x 13+0<=1,(\text { node }, 9) \\
& 0+x 9+0+0+0<=1,(\text { node }, 10)
\end{aligned}
$$

Table XVIII

$$
\begin{aligned}
& \operatorname{Min}, 700 x_{1}+700 x_{2}+1400 x_{3}+1200 x_{4}+1000 x_{5}+1100 x_{6}+1200 x_{7}+900 x_{8}+300 x_{9}+ \\
& +700 x_{10}+1000 x_{11}+1400 x_{12}+500 x_{13}+900 x_{14}+700 x_{15}
\end{aligned}
$$

$$
\begin{gathered}
Z^{*}=700(x 2)+300(x 9)+500(x 13) \\
Z^{*}=700(1)+300(1)+500(1)=1500
\end{gathered}
$$

Table XIX

Whereupon the values of the problem variables Primal and the optimal solution of the objective function by applying the complementary slackness conditions of Dual problems and can verify that the optimal value of the problem is obtained Primal and dual problem are obtained being in this case.

$$
\mathrm{Z}^{*}=\mathrm{W}^{*}=1500
$$

Lagging then demonstrated the power of this tool that allows linear programming to obtain the value of the objective function practically and efficiently from the dual problem with the complementary slackness theorem, a fundamental tool in the optimization processes.

Conclusions.

- We can see how is possible to minimize distances and the number of returns on the original way using an efficient algorithm.
- You can watch how is possible design a model across network using optimization with excellent results.
- The complementary slackness theorem is a great tool to test the original model.
- The economy of implementation results cheaper than another methods. Andso easy to understand the answers.
- We can show an original programming code to use large scale optimization.
- We can infer based on the above equations that the values of;
$\mathrm{x} 1=0, \mathrm{x} 2=1, \mathrm{x} 9=1$, and $\mathrm{x} 13=1$
- Interesting as x 1 should apparently take zero value, however, to perform algebraic operations is worth zero. Once this detail above can obtain the value of the objective function by substituting the values of the variables and multiplication with the respective coefficient, as shown below:
- Total Distance is equal to 1500 meters.

References.

Ahuja R.K.,T.L.,Magnanti, and J.B.Orlin, Networks Flows: Theory, Algorithms, and Applications;Prentice -Hall,Englewood Cliffs, NJ,1993.

Akgul,M.,"A note on Shadow Prices in linear Programming" Journal of the Operations Research Society,35(5),pp,425-431,1984
Ali A,R,Helgason,J,Kennington,andH,Lall,"Primal Simplex Network Codes:state-of-theartImplementation Technology,'"Networks,8,pp,315-339,1978
Asher,D,T,"A Linear Programming Model for the allocationof R and D efforts,"IEEE
Transactions on Engineering Management,EM-9(4),PP.154-157,December 1992.
Ballinski,M.L."A Competitive (Dual) Simplex Method for Assignment Problem"Mathemetical Programming,34(2),pp.125-141,1986).
Barnes,J,W, and R.M.Crisp,'"Linear Programming: A Survey of General Purpose Algorithms,"AIIE Transactions,7(3),pp.212-221,September 1975.

Barr,R,S,F,Glover, and D.Klingman,"The Alternative Basis Algorithm for Assignment
Problems,"Mathematical Programming ,13(1),pp.1-13,1977.
Bazaraa.,M.S., and R.W.Lange,"A Dual Shortest Path Algorithm," Journal of the Society for Industrial and Applied Mathematics,26(3),pp.496-501,May 1974.

[^0]: * ITESM Campus Irapuato, Industrial Engineering Department, Mexico.

